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Abstract. A common theory of reversible charge transfer (RCT) kinetics for low and high excitation
power with the use of the conditional concentration of acceptors is presented. A comparison with recently
published RCT theory is given. The results are similar or identical only in restricted or fractal spaces of
low dimension, and in the case of low concentration of acceptors, i.e. in all the cases when the conditions of
the binary approximation are fulfilled. The deviation from the binary approximation results in a physically
incorrect picture, the cause being due to the different space averaging procedure. The probability of the
donor’s cation state is an increasing function of the concentration of the acceptor and of the characteristic
parameters of the rate constants.

PACS. 78.20.Bh Theory, models, and numerical simulation – 89.90.+n Other topics of general interest to
physicists

1 Introduction

Much interest has been devoted recently to the study of
the reversible charge transfer (RCT) kinetics in infinite
and restricted solutions in terms of the molecular param-
eters [1–10]. The theoretical results of various works on
this problem are essentially different [5–10], as a result
of different space averaging procedures. The proper treat-
ment of the back charge transfer in the kinetic theory of
this process is of crucial importance. It has been pointed
out that the problem of the back charge transfer, which
prevents the charge separation, is complex and leads to the
complex averaging procedure [5–9]. In reference [10] there
are presented and compared several methods for descrip-
tion of the charge transfer kinetics. Such important and
interesting problems as dependencies of the cation state
probability on the acceptor concentration CA and on the
parameters of the rate constant of charge transfer, have
not been discussed so far. However, they give important
information about the validity of the available formula-
tions of this problem.

In this work we present a common theory of RCT
both for low and high excitation power. We compare
some dependencies of the cation state probability P+(t)
of the donor molecule according to the results of two
theories [5–7], which were derived for the low concentra-
tion of the donors surrounded by randomly distributed
acceptors in solids. The method developed in reference [5]
uses the so called “novel” averaging procedure (NAP). Our
analysis shows that this NAP method is valid only if the
criterion of the binary approximation can not be violated
until the donor excited state probability can be approxi-
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mated by the condition N(t) ∼ exp(−t/τ), where τ is the
life-time of the donor’s excited state.

2 The common theory of the reversible
charge transfer in solids

Here we give a more detailed description of the charge sep-
aration kinetics, which has been discussed recently [5–10].
The probability of the cation state of donor S may be
obtained [6,7] using a method first proposed by Antonov-
Romanovskii and Galanin [11] for the electronic excitation
energy transfer in a solid solution.

Let the 4πCAp
+(r, t)r2dr be the average number of ac-

ceptor anion molecules A− which are located at a distance
r, r + dr from the donor-cation molecules S+, calculated
per one excited molecule S∗ [6, 7, 14, 16b]. CA is the con-
centration of acceptor molecules, which can be also a func-
tion of time CA(t) in the general case. p+(r, t) is the prob-
ability of cation-anion separation by distance r, r + dr.
The variation of conditional acceptor concentration [11]
c+(r, t) = CAp

+(r, t) with intermolecular distance r oc-
curs in time due to the forward electron transfer between
S∗ and A molecules, and due to the back charge trans-
fer from A− to S+. The donor molecule can be in three
states: excited, ground, and cation state. For the relevant
probabilities N , it exists:

N∗(t) +Ngr(t) +N+(t) = 1. (1)

We are interested in the time dependence of the prob-
ability of the donor non-cation state Nnc(t) [6,7]:

Nnc(t) = N∗(t) +Ngr(t), (2)



188 The European Physical Journal B

for which it is easy to write kinetic equations describing
RCT. The probability of the cation state is given by:

N+(t) = 1−Nnc(t) (3)

with initial conditions

Nnc(0) = 1; N+(0) = 0. (4)

The rate equation for Nnc(t) can be written as:

dNnc(t)/dt = −F (t)4π

∞∫
Rm

∂p+(r, t)/∂t r2dr. (5)

From the above definition of c+(r, t) it follows that
F (t) is the concentration of the excited donor-acceptor
pairs, as the integral term in equation (5) determines the
derivative of the donor cation-state probability calculated
per one initially excited donor-acceptor pair. Rm is the
sum of radii of two molecules. For point particles, Rm is
equal to zero. If charge back transfer takes place, we can
write:

F (t) = Nnc(t)[Cnc(t) + CA(t)] (6)

as a function of the acceptor concentration.
For low excitation power, (Cnc(t) � CA(t)), the con-

centration of donor molecules in the non-cation state is
derived from the equation [6,7]:

dNnc(t)/dt = −[Nnc(t)]4πCA

∞∫
Rm

∂p+(r, t)/∂t r2dr. (7)

In the case of high excitation power, (Cnc(t) � CA(t)),
we get using the equation (6) [16]:

dNnc(t)/dt = −N2
nc(t)4πCso

∞∫
Rm

∂p+(r, t)/∂t r2dr. (8)

Cso is the initial concentration of S∗. The differential op-
erator ∂/∂t in the integral of equations (7) and (8) means
that the change of p+(r, t) is due to the charge transfer
and to the molecular motion and CA(t) is independent of
this operator. The equations for Nnc(t) are reduced to the
modified equations of the theory of the electron energy
transfer of Forster and Dexter [11–15], when molecular
diffusion is also taken into account [14,15].

Deactivation of donor occurs due to natural decay of
its excitation and to intermolecular charge transfer with
the rate constants [12,13]:

ko = 1/τ, (9)
kf = (1/τ) exp[(Rf − r)/af ], forward transfer, (10)
kb = (1/τ) exp[(Rb − r)/ab], back transfer. (11)

k with the appropriate subscript denotes the rate constant
of the relevant process. r is the donor-acceptor separation.
Rf , Rb, af and ab are the molecular parameters, which

characterize the distance scales of the forward and the
back charge transfer rates. τ is the life time of the donor’s
excited state. c+(r, t) satisfies the equation for solids:

ċ+(r, t) = kf(r)n(r, t) − kb(r)c+(r, t), (12)

c+(r, 0) = 0. (13)

The pair distribution function of reactants, n(r, t), sat-
isfies the equation:

ṅ(r, t) = −kf(r)n(r, t) − 1/τn(r, t). (14)

By using the correlation between the probabilities of
the donor cation and the non- cation states (Eq. (3)), we
can use the equality of their derivatives

Ṅ+(t) = −Ṅnc(t) (15)

and get the cation-state probability of donor for low exci-
tation power:

N+(t) = 1− exp[−4πCA

∞∫
Rm

p+(r, t)r2dr], (16)

and for high excitation power:

N+(t) = 1− [1− 4πCso

∞∫
Rm

p+(r, t)r2dr]−1. (17)

3 The NAP method

In the NAP model the “novel” averaging procedure is
used to treat the kinetics of the forward and back charge
transfer [5]. Instead of solving the differential equation
for the radical-ion population and then averaging over all
of the acceptor configurations, the equation is first aver-
aged over N − 1 acceptors, and then solved. The thermo-
dynamic limit is taken in order to get the total cation
state probability. This method is discussed further in
references [5,8–10]. At time t = 0 the ensemble of donors
is optically excited by the low power source. The cation
state probability of the donor is given by this model as:

P+(t) = 4πCA

∫
m+(r, t)r2dr. (18)

According to NAP model for solids, m+(r, t) satisfies the
equation [5,9]:

ṁ+(r, t) = kf(r)n(r, t)N(t) − kb(r)m+(r, t). (19)

Both forward and back charge transfer are taken here
into account.

At time t = 0 and for r > Rm the acceptor molecules
are uniformly distributed, the function and m+(r, 0) = 0.
N(t) is the excited state probability of donors, which
obeys the conventional kinetic equation [11–15]:

dN(t)/dt = −CAN(t)
∫
kf(r)n(r, t)d3r −N(t)/τ. (20)
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In this model the pair distribution function of reactants is
evaluated from:

ṅ(r, t) = −kf(r)n(r, t), (21)
n(r, 0) = 1. (22)

It should be remarked that the natural lifetime of a
donor’s excitation τ is introduced in different ways in the
present and in the NAP theory (Eqs. (14, 20)) [9]. Calcu-
lations show that in the absence of back charge transfer,
both theories yield identical results for the donor cation
state probability (Eqs. (16, 18)).

The equation (19) for solids results in [5]:

P+(t) = 4πCA

∞∫
Rm

kf(r) exp[−kb(r)t]

×
t∫

0

exp{−[kf(r) − kb(r)]t′}N(t′)dt′r2dr. (23)

The donor excited state probability N(t) is given
by [14,15]:

N(t) = exp(−t/τ) exp

{
−4πCA

∞∫
Rm

[1− exp
(
−kf(r)t

)
]r2dr

}
= exp(−t/τ)S(t). (24)

The essential difference between equation (19) in the
NAP model and equation (12) in the presented model [6]
is determined only by the function N(t) in equation (19).
As will be seen below, only the approximation

N(t) ∼ exp(−t/τ) (25)

in equations (18–23) results in a physically reasonable be-
haviour of the donor cation state probability for vary-
ing reaction parameters. At a low concentration CA of
molecules A, or at small kf(r), the integrand in equa-
tion (16) has a small value α. The decomposition of equa-
tion (16) with a low parameter α gives the result [5,9] –
equation (18).

In equations (16) or (24), the acceptor concentration
may be high. The only condition which must be fulfilled
is that acceptors deactivate the donor independently from
each other: the presence of any acceptor does not influence
the action of the other acceptors [15].

4 Discussion

In a solid solution and in a binary approximation, the
donor cation state probability, because of reversible charge
transfer independently of the space character (the Eu-
clidean infinite or restricted space or fractal media of var-
ious dimensions), must satisfy the following conditions as

the effect of the principle of causality:

(i) The probability P+(t) must be an increasing func-
tion of the acceptor concentration for any ratio of
the rate constants of the forward and back charge
transfer. This probability is an increasing function of
CA in the case of kb(r) = 0 [17]. Such behaviour is ex-
pected also in the case when kb(r) > 0. The following
consideration illustrates this statement:
Let an excited donor molecule be found at the cen-
ter of some sphere with an acceptor molecule on its
surface. Then, with the increase of the number of
the acceptors on this surface, the maximum value
P+

max(t) of probability P+(t) can only increase, in-
dependent of back transfer reaction, provided that
the acceptors act independently on the donor: every
donor with surrounding acceptors represents an in-
dependent “vessel” [14b]. In regular (or fractal [19])
space (a set of spherical layers with definite thick-
ness) with many donors (“vessels”) and acceptors,
this time-dependent character cannot change if the
charge transfer rate constants do not change. With
the increase of the number of acceptors in any layer,
the donor cation state probability can only increase,
since every acceptor acts independently [15].
From this discussion it follows also:

(ii) P+(t) must be an increasing function of the charac-
teristic distance Rf = Rb in any case.

(iii) P+(t) must be a decreasing function of ab (deter-
mined by the overlap of the wave functions of ions)
and an increasing function of af , which is deter-
mined by the overlap of the wave functions of neutral
molecules of the donor and the acceptor.

In the calculations, the numerical procedure based on
the expanded DCR program [23] was used. The donor ex-
cited state natural decay, was not taken into account since
the donor’s excitation lifetime was already included by
multiplying with the factor exp(−t/τ) in equation (24).

4.1 RCT in confined space

The fractal structures are self-similar and display dila-
tional symmetry, which determines their site density func-
tion gfr(r) in terms of the Euclidean dimension d and the
Hausdorf fractal dimension d (d ≤ d) [19–22]. RCT kinet-
ics in a fractal space has been considered in reference [17]
in which the above argument and results are depicted. The
fractal structure of the reaction space results in a slowing
down of the charge separation [17]. The following discus-
sion is based on conclusions reached in that work.

In a restricted space, we must introduce into the space
integrals the site density characteristic for a sphere of ra-
dius R [19–22]:

grst(r) = 2πr2(1− r/2R)ρ. (26)

2πr2ρ is the limiting value of g(r) for R =∞. The Forster-
type decay follows for R→∞ by taking grst(r) = 2πr2ρ =
const [21]. Space restriction slows down the cation state
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Fig. 1. The dependence of P+
max(CA) on the acceptor con-

centration according to the NAP model, equation (18). Rf =

Rb = 12 Å, af = 3 Å, ab = 1 Å, Rm = 5 Å. Bold line, infi-
nite Euclidean space. Dotted line, restricted space: Rm = 4 Å,
Rmax = 11 Å.

probability. In such space, the value of N(t) can be ap-
proximated by exp(−t/τ). As a consequence, the probabil-
ity P+(t) becomes an increasing function of the acceptor
concentration. This is demonstrated in Figure 1. The back
charge transfer does not affect this behaviour. In restricted
space, according to both theories, the maximum of cation
state probability P+

max(t) is a non-decreasing function of
the acceptor concentration.

In order to take into account the fractal properties of
the solid space, it is necessary to include in space integrals
(Eqs. (16–18, 23, 24)) the site’s density function [19–21]:

gfr(r) = Ard−d, (27)

where A is the proportionality constant. In the case of
the maximum of the fractal dimension the behaviour of
P+(t) repeats the behaviour, founded in regular three-
dimensional Euclidean space. For a low fractal dimen-
sion, we have the correct dependencies of P+

max(t) (Fig. 2).
Thus, in restricted and fractal spaces, for which the space
integrals in equations (17) and (19) are small, the donor
cation state probability P+(t) has the correct behaviour
– it satisfies conditions (i)–(iii). As we shall see below,
there exists a reverse picture in Euclidean infinite space.

4.2 RCT in Euclidean space

In Euclidean infinite space N(t) < Nq(t), where q denotes
restricted or fractal space [20,21]. The first term in the
right side of equation (19) decreases with the increase of
CA and Rf , and is sensitive to the space character. In par-
ticular, it is minimum in infinite Euclidean space, and this,
in turn, increases the role of the second term on the right
hand side of equation (19). The effect of charge back trans-
fer increases with the increase of the reaction space and its
dimension. Such an increase is not physically meaningful.

Considering condition (i), the cation state probability
(for any back transfer rate constant and at any time t)

Fig. 2. The time-dependence of P+(t) according to the equa-
tion (18) for different concentrations of the acceptors (from the
top to the bottom) CA = 1; 0.5 and 0.1 M/l for fractal space

with fractal dimension d = 1, 5. Rf = Rb = 10 Å, af = 2 Å,
ab = 1 Å, Rm = 5 Å.

Fig. 3. The same dependence as in Figure 2, (from left to

right) CA = 1; 0.5 and 0.1 M/L. Rf = Rb = 10 Å, af = 2 Å,

ab = 1 Å, Rm = 5 Å. Euclidean space, d = 3.

must be a non-decreasing function of the acceptor con-
centration as well as of the rate constant of the forward
charge transfer. The function (18) does not satisfy these
requirements (Figs. 1–3). Here it is assumed that the con-
centration of acceptors is much larger than that of the
donor, the acceptor-acceptor excluded volume effects be-
ing neglected.

Figure 1 shows the dependence of P+
max – as a func-

tion of the acceptor concentration CA. There is a de-
creasing branch followed by an increase, in contradic-
tion to condition A. However, in the restricted space
the decreasing branch is missing. Calculations for the re-
stricted space were carried out by using equation (19) and
including the factor grst(r) in the integrals. The presence
of the decreasing branch is a consequence of the inclu-
sion of N(t) = exp(−t/τ)S(t) in equation (19). In re-
stricted space, the integral in equation (24) is small and as
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Fig. 4. The dependence of P+
max(Rf = Rb); af = 3 Å, ab = 1 Å.

NAP model, equation (18). Dotted line - CA = 0.01 M/L. Bold
line - CA = 0.001 M/L. Dash-dot line - CA = 0.01 M/L - fractal
space with fractal dimension d = 2.

Fig. 5. The P+
max(ab) as function of ab according to the equa-

tion (18). Rf = Rb = 12 Å, af = 1 Å. Lower line - CA = 1 M/L.
Upper line - CA = 0.01 M/L.

a result, N(t) ∼ exp(−t/τ). When S(t) ≈ 1 the donor
cation state probability becomes a normal increasing func-
tion of the acceptor’s concentration. Any circumstance,
which gives S(t) ≈ 1, ensures correct behaviour of the
probability P+(t, CA); it is required by the binary approx-
imation. If S(t)� 1 (violating the criterion of binary ap-
proximation) the behaviour of the curves is different: the
decreasing curve with increase of CA does not correspond
to physically meaningful behaviour. In the NAP model, if
CA increases the effect of back transfer increases with no
limit, while the increase of the effect of forward transfer
is restricted by the nonexponential law N(t).

Figure 4 shows the dependence P+
max on Rf = Rb. In

infinite regular space, this function is (in NAP model) a
decreasing function of Rf = Rb. However, in restricted,

(a)

(b)

Fig. 6. The different tmax, for which P+(t) has maximum

value. Rf = Rb = 10 Å, af = 2 Å, ab = 1 Å. (a) Euclidean
space, (different tmax). CA = 1; 0.5; 0.1 M/L (from left to
right). (b) Fractal space; d = 2 (coinciding tmax).

fractal space of low dimension or at low concentration of
acceptors, P+

max(Rf = Rb) is an increasing function. Here
we can see again the disturbing influence of N(t) in equa-
tion (19).

Figure 5 shows the dependence P+
max on ab. Here we

see the increase of P+
max with increase of ab – the charac-

teristic of the ions’ wave function’s overlap (donor-cation
and acceptor-anion). Here also a violation of condition (iii)
takes place.

Hence, the behaviour of functions (18) and (19) does
not correspond to the physical sense of the donor-cation
state probability when the conditions of the binary ap-
proximation are not strictly fulfilled. As we see, the condi-
tion S(t) ≈ 1 provides the correct behaviour of the cation
state probability P+; this is the demand of the binary
approximation. If S(t) � 1 (in the case of breaking the
criterion of the binary approximation) the behaviour of
the curves in two theories, references [5,6], is different: in
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the second case we cannot explain the curves behaviour.
The considered theories take into account the back charge
transfer differently. In the case of kb(r) = 0 the NAP
results are correct for any value of CA, Rf , t and the
reaction volume [9], and the results of the theories [5,6]
coincide.

From the expressions (18) and (19) it follows that
the cation state probability P+(t) has maximum value
P+

max(t) at different times at different acceptor concentra-
tions CA, keeping the rate constants of the charge transfer
kf and kb at constant values (Fig. 6). However, it is phys-
ically clear that these maximum meanings of P+(t) for
different CA must happen at the same time, if the rate
constants are not varied. The following simple argument
illustrates this statement. If an excited donor molecule is
found at the center of a sphere (of radius R) with an ac-
ceptor molecule on its surface, then with the increase of
the number of acceptors, the maximum value of P+(t)
appears for the same invariable time. This time does not
change with variation of the acceptors quantity if the ac-
ceptors influence on the donor is independent: every donor
with surrounding acceptors represents an independent sys-
tem [14d]. Now, in the regular (or fractal [19]) space (set
of the spherical layers with definite thickness) with many
donors and acceptors this time-dependence character can
not change if the charge transfer rate constants are the
same. Hence, the behaviour of functions (18) and (19) does
not correspond to the physical sense of the donor-cation
state probability. Figure 6 shows that the time tmax, for
which P+(t) has a maximum value, depends on the accep-
tor concentration in Euclidean space, and tmax does not
depend on CA in fractal space.

So, the considered theories take into account the
charge back transfer differently. According to the NAP
model, the effect of back transfer increases without limit,
if CA increases and S(t)� 1, while the increase of the for-
ward transfer effect is restricted by the non-exponential
law N(t). The condition S(t) ≈ 1 ensures a correct be-
haviour of the cation state probability.
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